Structure of the lutein-binding domain of human StARD3 at 1.74 Å resolution and model of a complex with lutein
نویسندگان
چکیده
A crystal structure of the lutein-binding domain of human StARD3 (StAR-related lipid-transfer protein 3; also known as MLN64) has been refined to 1.74 Å resolution. A previous structure of the same protein determined to 2.2 Å resolution highlighted homology with StARD1 and shared cholesterol-binding character. StARD3 has since been recognized as a carotenoid-binding protein in the primate retina, where its biochemical function of binding lutein with specificity appears to be well suited to recruit this photoprotective molecule. The current and previous structures correspond closely to each other (r.m.s.d. of 0.25 Å), especially in terms of the helix-grip fold constructed around a solvent-filled cavity. Regions of interest were defined with alternate conformations in the current higher-resolution structure, including Arg351 found within the cavity and Ω1, a loop of four residues found just outside the cavity entrance. Models of the complex with lutein generated by rigid-body docking indicate that one of the ionone rings must protrude outside the cavity, and this insight has implications for molecular interactions with transport proteins and enzymes that act on lutein. Interestingly, models with the ℇ-ionone ring characteristic of lutein pointing towards the bottom of the cavity were associated with fewer steric clashes, suggesting that steric complementarity and ligand asymmetry may play a role in discriminating lutein from the other ocular carotenoids zeaxanthin and meso-zeaxanthin, which only have β-ionone rings.
منابع مشابه
Relationship between Concentrations of Lutein and StARD3 among Pediatric and Geriatric Human Brain Tissue
Lutein, a dietary carotenoid, selectively accumulates in human retina and brain. While many epidemiological studies show evidence of a relationship between lutein status and cognitive health, lutein's selective uptake in human brain tissue and its potential function in early neural development and cognitive health have been poorly evaluated at a molecular level. The objective of this study was ...
متن کاملProtective effect of lutein on spinal cord ischemia-reperfusion injury in rats
Objective(s): Paraplegia is deterioration in motor or sensory function of the lower limbs that can occur after modification of a thoracoabdominal aortic aneurysm. The purpose of this survey was to determine the protective action of lutein on spinal cord ischemia-reperfusion (I-R) damage. Materials and Methods: Thirty-five male rats were distributed into five groups: intact, sham, dimethyl sulfo...
متن کاملRadioprotective Efficacy of Lutein in Ameliorating Electron Beam Radiation-induced Oxidative Injury in Swiss Albino Mice
Background: Lutein, a carotenoid compound, has previously been studied for its antioxidant and medicinal properties as well as the moderate protection it confers against gamma radiation. This study aimed at evaluating the effects of lutein against radiation-induced hematological and biochemical changes in mice.Methods: The optimized dose of the compound was orally administered for 15 days, and ...
متن کاملLutein can act as a switchable charge transfer quencher in the CP26 light-harvesting complex.
Energy-dependent quenching of excitons in photosystem II of plants, or qE, has been positively correlated with the transient production of carotenoid radical cation species. Zeaxanthin was shown to be the donor species in the CP29 antenna complex. We report transient absorbance analyses of CP24 and CP26 complexes that bind lutein and zeaxanthin in the L1 and L2 domains, respectively. For CP24 c...
متن کاملCorrection: Relationship between Concentrations of Lutein and StARD3 among Pediatric and Geriatric Human Brain Tissue
[This corrects the article DOI: 10.1371/journal.pone.0155488.].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 72 شماره
صفحات -
تاریخ انتشار 2016